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A B S T R A C T

In a recen t paper P. J. Green obtained some conditional limi t

theorems for the absorp tion time of left-continuous random walk. His

me thods required certain distributions to have exponentially decreasing

tails . Here we take a different approach which will produce Green ’s

resul ts under minima l conditions. Limit theorems are given for the

maxim um as the initia l position of the random walk tends to infinity .

Key words: left continuous random walk; maximum; absorption time ;

l imit theorems ; local limit theorems ; renewal theorems .

1. INTRODUCTION

~Ie cons ider a left-continuous random walk {S~ :n=O~ 1~ ...} on the

non-nega tive integers with (0) as an absorbing state . Specifically,

for j 0,1,..., let

P{S~~1 Sn 
- 1 + j$S ) = p~ (s~ > 0), = 

~~ 
(Sn
. 0)

where we assume > 0 + P1 < 1 and that {Pj} has un it maximal

span. (tri te f(t) a 
~ ~~~~ Recently Green (1976) has obtained ex-

11=0

pressions for the distribution of (il ,N) where N Is the time to

absorption and ii — max (S~ ;n ~ N ). In the cases a f’(l-) ~ 1 he

ob tained some results on the tall behavi or of M and limit theorems

for N as H -
~~~~~~. However his methods of proof require conditions

wh ich appear not to be necessary for the validi ty of the results For

example when a • 1 hIs stated results involve only f’’(l-) which :~~~~ ::~
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must necessarily be finite , but their proofs require that f(s)

exists for si < 1 + c for some £ > 0,

We shall derive alternative representations for some of Green ’s

quantiti es and use these together with renewal theorems and local

l imi t theorems for the n-step transition probabilities of (S~}

when a — 1 and , when a < 1, for an associate d random walk with

positive drift, to obtain Green ’s results un der minimal conditions.

When a < 1 we also obtain limit theore as for N (as M .~ ) under

some weaker moment assumptions (Theorems 4 and 5) and when a ~ 1

we obtain limit theorems for II as s0 ~~co~

2. THE CASE OF ZERO DRIFT

For 0 ~ s ~ 1; k ,m = 0,1,..., let

flk(m ,s) = E(sN ;M ~ m S 0=k). (1)

Green (1976) has shown that

flk(m ,s) 5 Urn_ k(S)/Urn(S)

where

1 u 11(s)t sf(t)-t

which exists if i t t < g(s) where g(s) is the least non-negative

solution of sf(t) — t. As is well known , (g(5))k is the probability

generating function (p.g.f.) of It when S0 — k. Now define

7(t) — sf(tg(s))/g(s) (0 ~ t ~ 1) which Is a p.g.f. for each

s e(0,1]. Define the sequence of functions {u11(s):j—O,1,...)
by u0(s) 1 and

P SZ u ( s ) t 11 — 0 (2)
11—1 g(s)(T(t)—t)

_________________________ — 
—
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whence U11(s) — (g(s)) 11 u11(S) and

flk (m ,s) • (g(s))k Um_ k 5)/Um (S)~ 
(3)

Fi nall y define {v11
(s):j—O ,1,...) by v0(s) 1 and

v 11(s) — u11(s) 
— u11_ 1(s) (jal ,2,...) and hence

p s(1-t)
v (~ )t~ 

0 (4)
g(s)(T(t)—t)

an d v11(s) ~ 0 (0 < s ~ 1); see, for example, Yan g (1973, p.448).

It follo ws from (3) that

P(rl < X IS 0 k) U Ix ]_k /U [x]

and Green (1976) has shown that

E(sN II4>j) • g(s)v11(s)u11/v11u11(s) (6)

an d hence that knowledge of the asymptotic behavior of the u ’s and

V ’s yields limit theorems for M and N. Here v11 v11(1) and

U
11 

u~ (1).

It is pointed out in Pakes (1977) that

f l,j ?l ’
~ 

• (7)

where ~~~ — P(S~~JIS 0.I). and hence

~ p~’~~S
’
~(g(s))

11t11 a g(s) t (1—t)
n , > 1 7( t) — t 

~~ 
Sectio~% C

Thus we obtain the representation

v
3
(s) • p0s(g(s))

11
~~ ~ p~

J
~1s

fl .
n — 

-~~

Assume now that a • I and b • f’’(l-) c •, W e see that

-  
-
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v11 p0G1 1 1~ 1 where G~~ = 
~~~~~~ 

Is a Green ’s func tion.

Lemma 1 of Pakes (1977) then yields

V
j 

+ 2t 0/b ~ u11 — 2p 0J/b. (8)

The first relation is a direct consequence of a discrete renewal

theorem; we shall enlarge on this below .

Let now s = S 11 
• exp(—eb/2 J 2) (J=1 ,2,...). It is easily seen

that (g(s 11fl
11 + exp (—e 1”2). tie now make use of the local limit

th eorem for 
~~~ derived in Pakes (1977):

sup I bn4~~ 
- (2/1~b)

”2jn~~
”2exp(-j2/2bn)I+ 0 (n-’~ ). (9)

.1>0

Observe th at p11(n) p
~V/Gij 

defines the distribution of a random

var iable (r.v.), A(j) say, v i a p11(n) P(A(j) = n).

Letting n 2x 11
j2/b In (9), where x > 0, we ob ta i n from

(8) and (9)

(23 2/b)p 11(n) a (x) (2,r~I
’2)1 x 3’2 exp(—1 /4x)

wh ich is the density of the stable law whose Laplace—Stielt jes trans-

form (L.S.T.) is exp(—e~~
2). It follows (Billingsle y (1968) Theo-

rem 7.8) that
(X

P (bA( j)/sj < x) . J ø(y)dy
0

and finally that

v
3
(s 11) + (2p 0/b) exp( -2e~’~

2 ) (Ji~ ). (10)

Note that the convergence here is unifo rm for 0 ~ 0 ~ A <

Let *~(e) • v 3 (s 11) and •(8) represent the right hand side
of (10). Then
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J 1u Cs ) = j-~~+ i
_ i I (*k(8k /i~~ 

-

11 .1 k 1

.1
+ j i I *(ok~/j2). (11)

k•i

As j.~ the las t term on the right

+ (2p 0/b) f 1 
exp (-2x e~’12 ) dx = (p0/b)O~~

’2(1—exp (—2e~’
12)).

Let 0 > £ > 1 be given. Then the second term on the right of ex-

pression (11) -

c 2e + i—~ 
~~ t*k (0 k 111 ) - *(ek 2 /112 )I

ej <k ~ j

and .1 can be chosen so large that the summands ~
Thus we find that

J~~u11(s3) 
+ (p 0tb)O~~~

2(1 - exp (—2 0~~
2)).

Combinin g this with (8) and (10) in (6) yields

Theorem 1. Let a - 1 and b • f’’(l-) < ~~~. Then
P(bN /2j 2 

~ x f  H > ~
j) • F(x) (j- .

~ )

where F has L .S.T .  (ex p( — O~~
2 )) e112cosech ~1~2

•

Assum e now that

f ( t )  • t + (1—t )6 L ((1— t) 1
) (12)

where 1 c 6 ~ 2 and L(•) Is slowly varying (s.v.) at infinity .

W~ then have

1 u 11t 11 • p0/(1.t)
6 L(( 1—t ) 1)
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and since (u
3
} Is a non-decreasing sequence , a Tauberl an theorem

for power series yields

— p0j
6’/r(6)L(j) (j-~~).

The following result is now en i mmediate consequence of (5).

Theorem 2. Suppose that (12) holds. Then

P(N ~ kx IS 0~k) • ~(i 
— x~~)

’]6~~ (k+~).

Equation (4) yields 1v 11t
11 p0/(1 

- h(t)) where

h (t) • (1 — f(t))/(1-t) Is a p.g.f. The discrete renewal theorem

(Erickson (1970), eq.(2.3)) shows that i f  (12) holds and if

3/2 < 6 < 1 then jv11/u 11 • 6—1 . This also holds when 1 < 6 ~ 3/2

because the weights of the distribution defined by h are monotonic

and corollary 3A of Williamson (1968) then applies. We now have the

following generali zation of results of Green (1976) and Lindv al l (1976)

on the tall behavior of M.

Theorem 3. Suppose (12) holds. Then

u r n  jP(M > iiS 0 k) a (6—1)k.
j +cs

3. THE CASE OF NEGATIVE DRIFT

In this section we assume a < 1. The p.g.f. 7(t) has mean

1 - g( s )/ sg ’ (s ) < 1 (0 < s ~ 1) and hence (2) and the Tauberlan

theorem for power series implies that

u3 (s) j’ p0g ’ (s ) (s / g( s ) ) 2 (0 < s ~ 1; 3 .c’). (13)

Furthermore the limi t function is continuous in [1 - s,1] (0 ~ e < 1),

_ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _  - _ _ _
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whence by Dini’ s theorem the convergence at (13) is uniform with

respect to sc (1 - c ,1]. In particular we have

Lemma 1. If a < 1 and s 11 ~ 1, s11 • 1 (j
~~) then

u11(s 11) p~/(1 — a).

Now assume that there exists a solution , D, exceed ing unity of

the equation f(t) = t and that the p.g.f. fD(t) — f(Dt)/D can be

expanded as

fD(t) = 1 — 6~~(1—t)
6 L ((1—t) 1

) (0 < 6 < 1)

or

fD(t) = 1 — a(1—t) + 6~~(1—t)
6 L ((1—t)~~) (1 < 6 ~ 2)

where in the latter case 1 < a = f’(D-) < ~ and L(’) is S.V. at

infinity . In either case the least positive solution , q, of

fD(t) = t is q = D~~. Let g0(s) = qg(s); we have

g0(s) = sf0(g 0(s)). Substitute tD for t in (7) to obtain

~ ~~~
1)

5~~0
t
t 11 = Dt ~~~~~ o ~ q~

’
~~s

’
~t

11 (14)
n ,i?1 11 

~~0(t)—t n ,J>1

where (q~~)] is the n— step transiti on matrix of an absorbing origin

left-continuous random walk , (Y~}. with Increment p.g.f. fD(t)/t and

hence has positive drift . Thus we obtain

v
11

(s ) p0s( g( s ) ) 34 
~~~ 4~+~ 

s’1 , (15)

anJ setting Q 1~ 
a I ~~~ we have

d n~ 1

D11v11 a (16)
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Equa tion (14) yields I Q111
t11 = t (q_t)/ (f~(t) - t) t/(i - d(t))

j
~ 1

where d(t) (fD(t) 
- q)/(t-q) is a p.g.f. Application of the dis-

cre te renewal theorem yields

Lemma 2. If 1/2 < 6 < 1 then

j1 6  1(11) + ( 1 — q ) 6 / r ( 6 )

and If 6 > 1 then

• (1— q)/(a—1 ).

The asymptotic behavior of {v11} now follows from (16). It is

shown In Pakes (1973) that

P(Y~ < xB(n) + ~n IY 0 1) ~ q + (1-q) H(x) (n+co )

‘~,here ~ = 0 If 6 < 1, a = a - 1 if 6 > 1 and H(•) Is the

D.F. of the stable law whose characteristic function is

•(e) exp [6~~(cos(,r6/2))I 0i
6(1_ 1ol O I~~ tan(w6/2))l,

B(’) is the inverse function of x6/L(x) and has the form

B(ri) — n~
16t4(n) where H(s) is S.V. at infinit y . Using the repre-

sentation for ~q~~~t
11 given In §6 of Pakes (1973) and mimicking

the proof of the local limit theorem for lattice distributions as

presented , for example , by Ibragimo v and Linnik (1970), it can be

readily checked that the following holds :

sup ~B(n)q~~~- (1—q)h((j—an)/B (n))~ + 0 (n~.~) (17)

where h (x) = H’(x). We must now distinguish a number of cases.

L~
) . 1/2 6 < 1. Let n x1111

6/L(J) where x11 
. x. Clearly

6(n) — jx~
”6, and hence if (T

J
} is a sequence of r.v.’s such that

— ~~~~~~~~~~
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P(T11~ n) = q~,~~/Q 111
, we ob tain

(118/1(11)) P(T~~x11i
6/L(i)) p(x) (18)

where p(x) = 6~~r(6)x
1”6 h(x~~’16) Is a dens ity function. This may

be seen by observing that 
j,

x
_h/ 6h (x

_ 1
~
f6 )dx 6M~ (l- 6) where

M h(9) ~~~~~~~~~ 
Is the M ellin transform of h(s). Now use the

formula (Kawata (1972), p. 272)

Mh (e) (r( 1—e))~~ J0
x A h (x)dx

where Xh(0) 
= exp(— 6~~8

6) Is the L.S.T. of H(s), to obta i n

Mh
(l_6) = (r(6))~~ . Indeed It is easy to show that

M~(e) = r ( 6 ) r ( e ) / 6 1 0 r ( o e ) .  Lemma 2 and (18) now yield

Qj~ ~ ~~~ exp (-enj~~L(j)) • ~(O)n= I

where ~(o) • ~ e 0
~
1p(x)dx .

Under our present assumptions we have g ’’(l-) < ~~ and

g ’(l-) — A a (1—uY 1. It is readily checked that the condition

1/2 < 8 < 1 implIes

(exp (A011
1_ 6

L(j))J[g (exp (_0j
_6
L(J))}J 11 • 1.

Using (15) end (16) we can rewrite (6) as

E (sN )M>j) — (g(s))3 
~~~~~ J1 ~~~~~ s~)(u11iu3 (s))

and the subsequent result readily follows.

~~ 

_ _ 
_
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Theorem 4. If 1/2 < 0 < 1 and v(j) = .1
6,1(11) then

(X
P(N - Aj ~ x v(j)IM > j) + p (y)dy (j+o ; x>0).

(ii). 1 < 8 ~ 2. Now le t n = j/A + x11B(j) in (17), whence

B (flP(T11 j/A + x
11
B(i)) a~~~

”6 h (-xA~~
1’
~
6)

and finally

[exp(Oi /AB(i))] ~~ I ~~~ exp [-en/B (j)] -
~ ~(e )

where ~(e) = expt6 108A~~~
6] is the moment generating function

Ox) a~~
116 h(-xa~~~~

6)dx. A special case is f’’(D-) <

and b = Df’’(D-) + ~ - a~ wh ich Implies that 6 2, and

6(j) = (bj)112.

~e must now cons ider two cases. First assume that either

1 < 6 < 2 or if 6 2 then L(x) • ~~ . Then in a similar manner

to case (I)

[exp (AOj/B(J))J[g (exp (_O/B(i))}] 11 • i

which follows on observing that FI (x) • ~ when 6 = 2. The follow i ng

• result is now apparent.

Theorem 5. If 1 < 6 < 2 and f’’(D-) — then

P(N - Aj 
~ xB(jflM > j) • I — H(—xA 1’

~ ’~
6) (— ~<x<~).

For our final case assume that f’’(D— ) ~~~. Letti ng

B (f’’(l-) + a - a2)/(1 - a)3 we have

[exp(A0J 2)J [g(exp(_03 1
~
’2))J 11 + exp (B02/2).
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Now le t p A + an d a2 = B + b& 3
. The follow i ng resul t

readily follows.

Theorem 6. If f’’(D-) < ~ then

P(N - iii ~ xaj”~
’2

IM > j) + ~(x), (— ~<x<°’)

the standard normal distribution functio n.

Thi s i s Green ’s Theorem 3 but he assumed that f(s) is finite

in ~~ < D + e for some c > 0. Lemma 1 and (5) yield the follow-

ing analogue of Theorem 2.

Theorem 7. Assuming only that a < 1,

u r n  P(M ~ kx fS 0=k) = 0 (0 ~ x < 1), = I (x > I).

F inally Lemmas 1 and 2 yield the following partial refinement of

Gree n ’s Theorem 1.

Theorem 8. If f’(D-) < ~~ then

l l m D11P(H > u s  =k) = (Dt< -1)(1—c &)/(a-1).0

__ - -. -— ---—~~~ - - - ----— - _ _
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